3 Textaufgaben zur Berechnung von Flächeninhalten und Umfängen von Kreisringen. Dabei müssen auch die benötigten Radien rechnerisch ermittelt werden.
Umkehraufgaben zur Kreisfläche: Berechnen des Radius r bzw. des Durchmesser d, wenn die Größe der Kreisfläche bekannt ist.
Formelsammlung zum Thema Kreis: Vergleich Durchmesser und Radius, Kreisfläche, Kreisumfang, Kreissektor und Kreisring.
4 Textaufgaben zur Berechnung von kreisförmigen Flächen.
Berechnen von Flächeninhalten von zusammengesetzten Figuren / Kreisteilen.
Textaufgaben zum Thema Umfangberechnung bei Kreisen.
Umkehraufgaben zur Berechnung des Durchmessers d oder des Radius r eines Kreises, wenn der Umfang u bekannt ist. Dies ist auch in zwei Textaufgaben anzuwenden.
Berechnen von Umfängen von zusammengesetzten Figuren (Kreisteilen, Quadratteilen) in sechs unterschiedlich schweren Beispielen.
Berechnung von Kreisflächen, wenn der Radius r oder der Durchmesser d gegeben sind. Zudem sind zwei einfache Textaufgaben zu lösen.
Berechnung von Kreisumfängen, wenn der Radius r oder der Durchmesser d gegeben sind. Zudem sind zwei einfache Textaufgaben zu lösen.
Übungsaufgaben zur Berechnung von Flächeninhalt und Umfang von Trapezen - sowohl mit natürlichen Zahlen als auch mit Dezimalzahlen. Eine Textaufgabe sowie eine Tabelle mit Umkehraufgaben vertiefen das Thema.
Arbeitsblatt zur Konstruktion von zwei Trapezen: In Aufgabe 1 sind alle 4 Seitenlängen des Trapezes gegeben; in Aufgabe 2 sind die beiden Seiten a und d sowie die beiden Winkel Alpha und Beta bekannt.
Ein erster Überblick über den Quader: Beschriften der Bestimmungsstücke, Aussagen zum Quader auf ihre Richtigkeit überprüfen und berechnen von Volumen und Oberfläche eines Quaders (natürliche Zahlen).
Ein erster Überblick über den Würfel: Beschriften der Bestimmungsstücke, Aussagen zum Würfel auf ihre Richtigkeit überprüfen und berechnen von Volumen und Oberfläche von zwei Würfeln (natürliche Zahlen, Dezimalzahlen).
Ein erster Überblick über die Kugel: Beschriften der Bestimmungsstücke, Aussagen zur Kugel auf ihre Richtigkeit überprüfen und berechnen von Volumen und Oberfläche einer Kugel.
Übungsaufgaben zur Berechnung von Flächeninhalt und Umfang von Rauten - sowohl mit natürlichen Zahlen als auch mit Dezimalzahlen. Eine Textaufgabe vertieft das Themadurch Berechnung des Grundstückspreises und der Zaunlänge (ohne Tor) eines Grundstücks.
Berechnung von Flächeninhalten von Dreiecken: Aufgaben mit natürlichen Zahlen, Dezimalzahlen, Textaufgaben und Aufgaben zum Ablesen der Seitenlänge bzw. Höhe.
Kreuzworträtsel zu den 20 wichtigsten Begriffen und Bezeichnungen der Geometrie - mit Selbstkontrolle (Lösungswort)
Von verschiedenen Dreiecken (allgemeines Dreieck, rechtwinkeliges Dreieck oder gleichschenkliges Dreieck) sind einzelne Winkel gegeben. Aufgrund der Eigenschaften dieses Dreiecks und der bekannten Winkelsumme von 180° in jedem Dreieck sind die restlichen Winkel zu berechnen.
Tabellarische Übersicht, um Dreiecke sowohl nach ihren Seiten (gleichseitiges, gleichschenkliges oder ungleichseitiges Dreieck) und auch nach ihren Winkeln (spitzwinkliges, stumpfwinkliges oder rechtwinkliges Dreieck) einzuteilen.
Formelsammlung zum Thema "Besondere Vierecke". Informationsblatt: Formelsammlung mit Bildern, Flächeninhaltsformeln und Umfangsformeln von Parallelogramm, Raute (Rhombus), Trapez und Deltoid. Arbeitsblatt: wie Informationsblatt, allerdings sind die Bilder und Formeln durcheinander, müssen ausgeschnitten und richtig zugeordnet werden.
Arbeitsblatt zur Herleitung der Formel zur Umfangberechnung eines Kreises: Messen von Durchmessern und Umfängen von Kreisen, Herleitung der Kreiszahl pi durch Division des Umfanges durch den Durchmesser, Umformen der Formel um den Kreisumfang berechnen zu können.
Berechnung des Flächeninhalts und des Umfangs von Parallelogrammen inkl. Textaufgabe und einfache Umkehraufgaben.
Berechnung des Flächeninhaltes von 4 zusammengesetzten Figuren. Diese Figuren lassen sich in Trapeze, Dreiecke, rechtwinkelige Dreiecke, Quadrate und Rechtecke zerlegen.
Eintragen von 18 Punkten in ein Koordinatensystem (4 Quadranten).