Übungsaufgaben zur Berechnung von Flächeninhalt und Umfang von Trapezen - sowohl mit natürlichen Zahlen als auch mit Dezimalzahlen. Eine Textaufgabe sowie eine Tabelle mit Umkehraufgaben vertiefen das Thema.
Arbeitsblatt zur Konstruktion von zwei Trapezen: In Aufgabe 1 sind alle 4 Seitenlängen des Trapezes gegeben; in Aufgabe 2 sind die beiden Seiten a und d sowie die beiden Winkel Alpha und Beta bekannt.
Übungsaufgaben zur Berechnung von Flächeninhalt und Umfang von Rauten - sowohl mit natürlichen Zahlen als auch mit Dezimalzahlen. Eine Textaufgabe vertieft das Themadurch Berechnung des Grundstückspreises und der Zaunlänge (ohne Tor) eines Grundstücks.
Berechnung von Flächeninhalten von Dreiecken: Aufgaben mit natürlichen Zahlen, Dezimalzahlen, Textaufgaben und Aufgaben zum Ablesen der Seitenlänge bzw. Höhe.
Von verschiedenen Dreiecken (allgemeines Dreieck, rechtwinkeliges Dreieck oder gleichschenkliges Dreieck) sind einzelne Winkel gegeben. Aufgrund der Eigenschaften dieses Dreiecks und der bekannten Winkelsumme von 180° in jedem Dreieck sind die restlichen Winkel zu berechnen.
Tabellarische Übersicht, um Dreiecke sowohl nach ihren Seiten (gleichseitiges, gleichschenkliges oder ungleichseitiges Dreieck) und auch nach ihren Winkeln (spitzwinkliges, stumpfwinkliges oder rechtwinkliges Dreieck) einzuteilen.
Formelsammlung zum Thema "Besondere Vierecke". Informationsblatt: Formelsammlung mit Bildern, Flächeninhaltsformeln und Umfangsformeln von Parallelogramm, Raute (Rhombus), Trapez und Deltoid. Arbeitsblatt: wie Informationsblatt, allerdings sind die Bilder und Formeln durcheinander, müssen ausgeschnitten und richtig zugeordnet werden.
Arbeitsblatt zur Herleitung der Formel zur Umfangberechnung eines Kreises: Messen von Durchmessern und Umfängen von Kreisen, Herleitung der Kreiszahl pi durch Division des Umfanges durch den Durchmesser, Umformen der Formel um den Kreisumfang berechnen zu können.
Berechnung des Flächeninhalts und des Umfangs von Parallelogrammen inkl. Textaufgabe und einfache Umkehraufgaben.
Berechnung des Flächeninhaltes von 4 zusammengesetzten Figuren. Diese Figuren lassen sich in Trapeze, Dreiecke, rechtwinkelige Dreiecke, Quadrate und Rechtecke zerlegen.
Eintragen von 18 Punkten in ein Koordinatensystem (4 Quadranten).
Ablesen von 18 Punkten in einem Koordinatensystem (4 Quadranten) und eintragen in eine Tabelle.
Konstruktion von zwei rechtwinkligen Dreiecken: Berechnung von fehlenden Winkeln in rechtwinkligen Dreiecken; Berechnung des Flächeninhalts eines rechtwinkligen Dreiecks
Konstruktion eines gleichschenkligen und eines gleichseitigen Dreiecks, von denen jeweils zwei Bestimmungsstücke gegeben sind. Aufgrund der Eigenschaften (gleichschenklig oder gleichseitig) muss mindestens ein drittes Bestimmungsstück berechnet bzw. erdacht werden.
Konstruktion von zwei Dreiecken, von denen jeweils zwei Seiten und ein nicht eingeschlossener Winkel gegeben sind.
Konstruktion von zwei Dreiecken, von denen jeweils eine Seite und deren beiden anliegenden Winkel gegeben sind.
Konstruktion von zwei Dreiecken, von denen jeweils zwei Seiten und deren eingeschlossener Winkel gegeben sind.
Konstruktion von drei Dreiecken von denen jeweils die Länge der drei Seiten gegeben ist (Seiten-Seiten-Seiten-Satz) sowie rechnerische Überprüfung, ob ein Dreieck mit gegebenen Längenangaben konstruierbar ist oder nicht.
3 Übungsaufgaben zum Thema Rechteck: 1) Konstruktion und Beschriftung eines Rechtecks und Berechnung des Umfangs und Flächeninhalts, 2) Berechnung von Umfang und Flächeninhalt einer zusammengesetzten Figur, 3) Berechnung einer Grundstücksgröße und dessen Preis
Teilen von zusammengesetzten Figuren, um mit dem Lehrsatz des Pythagoras fehlende Seitenlängen und schließlich Umfang und Flächeninhalt dieser Figuren berechnen zu können.
Berechnung von Seitenlänge, Höhe, Umfang und Flächeninhalt im gleichschenkeligen Dreieck mit Hilfe des Lehrsatzes des Pythagoras.
Berechnung von Seitenlänge, Höhe, Umfang und Flächeninhalt im gleichseitigen Dreieck mit Hilfe des Lehrsatzes des Pythagoras.
Berechnen von Seitenlängen und Diagonalen im Rechteck mit Hilfe des Lehrsatzes des Pythagoras: Anleitung und vier Übungsaufgaben (inkl. Umfangs- und Flächeninhaltsberechnung)
Berechnen von Seitenlängen und Diagonalen im Quadrat mit Hilfe des Lehrsatzes des Pythagoras: Anleitung und vier Übungsaufgaben (inkl. Umfangs- und Flächeninhaltsberechnung)
Übungsbeispiele, um in rechtwinkeligen Dreiecken fehlende Seitenlängen (Hypotenuse oder Kathete) zu berechnen. Zudem sollen auch jeweils Umfang und Flächeninhalt dieser Dreiecke berechnet werden.