Formeln für die Berechnungen von Geschwindigkeit, Weg oder Zeit richtig verwenden: 1) Zwei Läufer starten gleichzeitig bei einem Marathonlauf mit unterschiedlichen Geschwindigkeiten. Berechnen, wie lange die beiden Läufer benötigen und wie lange der schnellere Läufer im Ziel auf den langsameren Läufer warten muss; 2) Beim Marathonlauf wird als Maß für das Tempo die Bezeichnung "Pace" (wobei 1 Pace ist die für einen Kilometer benötigte Zeit) verwendet. Berechnen der mittleren Paces der Läufer.
Beispiel zur Querschnittsfläche eines Wassergrabens: Berechnen, wie viel m³ Wasser pro Sekunde durch den Querschnitt fließen (Einsatz der Integralrechnung zur Flächenberechnung: Nullstellen einer Funktion berechnen); Flächeninhalt eines gleischenkligen Trapezes berechnen; Steigung der Böschung in Höhe des Wasserspiegels berechnen (Steigungswinkel einer Funktion berechnen)
Einsatz der Integralrechnung für die Flächenberechnung; Formel für die zusammengesetzte Fläche erstellen: 1) Das Fisch-Symbol ist ein bekanntes religiöses Symbol. In diesem Beispiel sind die Funktionsgleichungen zweiten Grades zu ermitteln sowie der Flächeninhalt des Fisches zu berechnen. 2) Der Davidstern ist ebenso ein bekanntes religiöses Symbol. Er besteht aus zwei übereinanderliegenden gleichseitigen Dreiecken, die in 12 kleine gleichseitige Dreiecke unterteilt werden können. Hier ist eine Formel für die Berechnung des Flächeninhalts zu erstellen.
Einsatz der Integralrechnung für die Flächenberechnung: 1) Eine Spiegelfläche ist durch zwei Funktionen zweiten Grades umschrieben. Erstellen von Funktionsgleichungen und Berechnung der Spiegelfläche. 2) Berechnung der Fläche einer Steinplatte in Form eines Fisches, die von zwei Funktionsgraphen eingeschlossen ist.
Durch Berechnung feststellen, ob eine Gerade in einem Punkt einer geraden Straße eine Tangente an die gegebene Funktion 4. Grades ist; eine Funktionsgleichungen 2. Grades mit erstellen
Steigung der Teilstrecken und der Gesamtstrecke einer Bergstraße in Grad und % berechnen; horizontale Entfernung und Höhenunterschied zum Ausgangspunkt in einer Skizze sowie als Funktionsgraphen darstellen; aus einer Funktion 3. Grades durch Funktionsableitungen die Maximalsteigung der Bergstraße berechnen
Berechnung des Steigungswinkels von der Talstation zur Bergstation einer Seilbahn (Winkelfunktionen richtig anwenden) sowie der Durschnittsgeschwindigkeit der Fahrt mit dieser Seilbahn; Berechnung der Geschwindigkeit einer Wandergruppe, die den Rückweg zu Fuß zurückgelegt hat durch Ablesen der benötigten Angaben aus einer Grafik.
Berechnen des Steigungswinkels und erstellen einer Funktionsgleichung 2. Grades eines Tragseils einer Gondelbahn, die von der Talstation über zwei Stützen bis zur Bergstation verläuft.
Winkelfunktionen richtig anwenden; Entfernungen und Höhen von einem Aussichtsplateau und einer Aussichtswarte berechnen; Funktionsableitungen für die Flugbahn eines Paragleiters bilden; eine Funktion 3. Grades mittels Technologieeinsatz lösen; Formeln erstellen
Winkelfunktionen richtig anwenden; Entfernungen und Höhen berechnen; Skizzen anfertigen: 1) Von einem Aussichtsturm an einem Seeufer erblickt man die Mastspitze eines Segelbootes. Berechnung, wie weit der Mast vom Fußpunkt des Turms entfernt ist. 2) Vom Seeufer sieht man eine Felswand mit einem vertikalen Kletterpfad. Berechnung der Höhe der Felswand sowie die Länge des vertikalen Kletterpfades.
Temperaturangaben in Celsius uns Fahrenheit berechnen; Formeln richtig anwenden: 1) Umrechnen von Celsius in Fahrenheit und umgekehrt durch verwenden und umformen einer Formel; ablesen dieser linearen Funktion in einer Grafik. 2) Berechnen der prozentuellen Zunahme des Volumens von Wasser bei einer Erwärmung um 6° Celsius.
Eine lineare Funktion und eine Funktion 2. Grades mit Hilfe von sachbezogenen Angaben erstellen: 1) In einer Gemeinde nimmt die Bevölkerungszahl ab. Diese Abnahme soll ungefähr durch eine lineare Funktionsgleichung dargestellt sowie die Einwohnerzahl für das Jahr 2005 und für das Jahr 2010 berechnet werden. 2) Die Entwicklungszahlen einer Kleinstadt sind in der Tabelle gerundet angegeben. Diese Abnahme soll ungefähr durch eine Funktion zweiten Grades dargestellt und die voraussichtliche Einwohnerzahl im Jahr 2010 berechnet werden.
Beispiel zur jährlichen Restmüllmenge einer Stadt: Gleichungssystem und Polynomfunktion 2. Grades erstellen; voraussichtliche Mengenzunahme berechnen
Formeln richtig anwenden und interpretieren anhand eines WIndrades: 1) Berechnung des Radius der Kreisfläche, die die Rotorblätter überstreichen, 2) Berechnung der Leistung in Abhängigkeit der Windgeschwindigkeit, 3) Berechnung der nötigen Windgeschwindigkeit für eine bestimmte Leistung, 4) Berechnung der Momentangeschwindigkeit
Nach dem Torabstoß bei einem Fußballspiel beschreibt der Ball eine Flugbahn, die durch die Funktion dritten Grades näherungsweise beschrieben wird: Gleichungssysteme und Funktion 3. Grades lösen; Aufprallpunkt berechnen; Maximalhöhe berechnen (Funktionsableitungen)
Ein Stein wird mit einer Steinschleuder vertikal nach oben geschossen: Berechnung des Aufprallpunktes (Nullenstellen einer Funktion zweiten Grades), der Steigung und Momentangeschwindigkeit nach x Sekunden sowie der Maximalhöhe durch Funktionsableitungen.
Ermitteln der Funktionsgleichung der Flugbahn und des Aufprallpunktes eines Fußballs sowie des Steigungswinksls an einem bestimmten Punkt dieser Flugbahn.
Berechnen der Flugbahn und des Aufprallpunktes einer Kugel sowie des Steigungswinkels der Kurve beim Kugelstoßen mit einer Funktion zweiten Grades.
Erstellen einer Funktionsgleichung für die Flugbahn eines Tennisballs aus einem Funktionsgraphen; Berechnung der Koordinaten des Extrempunktes bzw. der maximalen Höhe der Flugbahn des Tennisballs.
Preisgestaltung in einer Bäckerei: Interpretation von Graphen bezüglich Aktionspreis im Vergleich zu Originalpreis von Brot; Berechnung von verkauften Brotlaiben sowie Einnahmen mit Hilfe einer Funktionsgleichung.
1) Erstellen einer Funktionsgleichung zum Vertrieb von T-Shirts über eine Online-Plattform (Servermiete, Betreuungskosten, Herstellungskosten); 2) Erstellen von Formeln im Zusammenhang zwischen Brustumfang und Volumen sowie Gewicht einer Kuh
Volumen eines quaderförmigen Hochbeetes berechnen, Umkehraufgabe zu einem volumsgleichen Drehzylinder, Interpretation eines Funktionsgraphen und erstellen einer Funktionsgleichung für den Temperaturverlauf im Hochbeet in Abhängigkeit zur Messtiefe.
Formeln für die Querschnittsfläche und das Volumen einer Halfpipe erstellen; Maßumwandlungen durchführen; Interpretation eines Funktionsgraphen mit dem zurückgelegten Weg eines Skaters in Abhängigkeit der benötigten Zeit.
Formeln erstellen und Trefferquote berechnen: Berechnung der Länge einer Autorennstrecke sowie der Wahrscheinlichkeit, ein Auto auf dieser Strecke mit Tischtennisbällen zu treffen.
Auf diesen Informationsblättern werden die 3 Binomischen Formeln grafisch hergeleitet.